Skip to content

API reference

Welcome to the reference.

Bases: ClassifierMixin, BaseEstimator

ClassicalClassifier implements several trade classification rules.

Including: Tick test, Reverse tick test, Quote rule, LR algorithm, EMO algorithm, CLNV algorithm, Trade size rule, Depth rule, and nan

Parameters:

Name Type Description Default
classifier mixin (ClassifierMixin

mixin for classifier functionality, such as predict_proba()

required
base estimator (BaseEstimator

base estimator for basic functionality, such as transform()

required
Source code in src/tclf/classical_classifier.py
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
class ClassicalClassifier(ClassifierMixin, BaseEstimator):
    """ClassicalClassifier implements several trade classification rules.

    Including:
    Tick test,
    Reverse tick test,
    Quote rule,
    LR algorithm,
    EMO algorithm,
    CLNV algorithm,
    Trade size rule,
    Depth rule,
    and nan

    Args:
        classifier mixin (ClassifierMixin): mixin for classifier functionality, such as `predict_proba()`
        base estimator (BaseEstimator): base estimator for basic functionality, such as `transform()`
    """

    X_ = pd.DataFrame

    def __init__(
        self,
        layers: list[
            tuple[
                ALLOWED_FUNC_LITERALS,
                str,
            ]
        ]
        | None = None,
        *,
        features: list[str] | None = None,
        random_state: float | None = 42,
        strategy: Literal["random", "const"] = "random",
    ):
        """Initialize a ClassicalClassifier.

        Examples:
            >>> X = pd.DataFrame(
            ... [
            ...     [1.5, 1, 3],
            ...     [2.5, 1, 3],
            ...     [1.5, 3, 1],
            ...     [2.5, 3, 1],
            ...     [1, np.nan, 1],
            ...     [3, np.nan, np.nan],
            ... ],
            ... columns=["trade_price", "bid_ex", "ask_ex"],
            ... )
            >>> clf = ClassicalClassifier(layers=[("quote", "ex")], strategy="const")
            >>> clf.fit(X)
            ClassicalClassifier(layers=[('quote', 'ex')], strategy='const')
            >>> pred = clf.predict_proba(X)

        Args:
            layers (List[tuple[ALLOWED_FUNC_LITERALS, str]]): Layers of classical rule and subset name. Supported rules: "tick", "rev_tick", "quote", "lr", "rev_lr", "emo", "rev_emo", "trade_size", "depth", and "nan". Defaults to None, which results in classification by 'strategy' parameter.
            features (List[str] | None, optional): List of feature names in order of columns. Required to match columns in feature matrix with label. Can be `None`, if `pd.DataFrame` is passed. Defaults to None.
            random_state (float | None, optional): random seed. Defaults to 42.
            strategy (Literal["random", "const"], optional): Strategy to fill unclassfied. Randomly with uniform probability or with constant 0. Defaults to "random".
        """
        self.layers = layers
        self.random_state = random_state
        self.features = features
        self.strategy = strategy

    def _more_tags(self) -> dict[str, bool | dict[str, str]]:
        """Set tags for sklearn.

        See: https://scikit-learn.org/stable/developers/develop.html#estimator-tags
        """
        return {
            "allow_nan": True,
            "binary_only": True,
            "requires_y": False,
            "poor_score": True,
            "_xfail_checks": {
                "check_classifiers_classes": "Disabled due to partly random classification.",
                "check_classifiers_train": "No check, as unsupervised classifier.",
                "check_classifiers_one_label": "Disabled due to partly random classification.",
                "check_methods_subset_invariance": "No check, as unsupervised classifier.",
                "check_methods_sample_order_invariance": "No check, as unsupervised classifier.",
                "check_supervised_y_no_nan": "No check, as unsupervised classifier.",
                "check_supervised_y_2d": "No check, as unsupervised classifier.",
                "check_classifiers_regression_target": "No check, as unsupervised classifier.",
            },
        }

    def _tick(self, subset: str) -> npt.NDArray:
        """Classify a trade as a buy (sell) if its trade price is above (below) the closest different price of a previous trade.

        Args:
            subset (str): subset i.e., 'all' or 'ex'.

        Returns:
            npt.NDArray: result of tick rule. Can be np.NaN.
        """
        return np.where(
            self.X_["trade_price"] > self.X_[f"price_{subset}_lag"],
            1,
            np.where(
                self.X_["trade_price"] < self.X_[f"price_{subset}_lag"], -1, np.nan
            ),
        )

    def _rev_tick(self, subset: str) -> npt.NDArray:
        """Classify a trade as a sell (buy) if its trade price is below (above) the closest different price of a subsequent trade.

        Args:
            subset (str): subset i.e.,'all' or 'ex'.

        Returns:
            npt.NDArray: result of reverse tick rule. Can be np.NaN.
        """
        return np.where(
            self.X_[f"price_{subset}_lead"] > self.X_["trade_price"],
            -1,
            np.where(
                self.X_[f"price_{subset}_lead"] < self.X_["trade_price"], 1, np.nan
            ),
        )

    def _quote(self, subset: str) -> npt.NDArray:
        """Classify a trade as a buy (sell) if its trade price is above (below) the midpoint of the bid and ask spread. Trades executed at the midspread are not classified.

        Args:
            subset (str): subset i.e., 'ex' or 'best'.

        Returns:
            npt.NDArray: result of quote rule. Can be np.NaN.
        """
        mid = self._mid(subset)

        return np.where(
            self.X_["trade_price"] > mid,
            1,
            np.where(self.X_["trade_price"] < mid, -1, np.nan),
        )

    def _lr(self, subset: str) -> npt.NDArray:
        """Classify a trade as a buy (sell) if its price is above (below) the midpoint (quote rule), and use the tick test to classify midspread trades.

        Adapted from Lee and Ready (1991).

        Args:
            subset (str): subset i.e., 'ex' or 'best'.

        Returns:
            npt.ndarray: result of the lee and ready algorithm with tick rule.
            Can be np.NaN.
        """
        q_r = self._quote(subset)
        return np.where(~np.isnan(q_r), q_r, self._tick(subset))

    def _rev_lr(self, subset: str) -> npt.NDArray:
        """Classify a trade as a buy (sell) if its price is above (below) the midpoint (quote rule), and use the reverse tick test to classify midspread trades.

        Adapted from Lee and Ready (1991).

        Args:
            subset (str): subset i.e.,'ex' or 'best'.

        Returns:
            npt.NDArray: result of the lee and ready algorithm with reverse tick
            rule. Can be np.NaN.
        """
        q_r = self._quote(subset)
        return np.where(~np.isnan(q_r), q_r, self._rev_tick(subset))

    def _mid(self, subset: str) -> npt.NDArray:
        """Calculate the midpoint of the bid and ask spread.

        Midpoint is calculated as the average of the bid and ask spread if the spread is positive. Otherwise, np.NaN is returned.

        Args:
            subset (str): subset i.e.,
            'ex' or 'best'
        Returns:
            npt.NDArray: midpoints. Can be np.NaN.
        """
        return np.where(
            self.X_[f"ask_{subset}"] >= self.X_[f"bid_{subset}"],
            0.5 * (self.X_[f"ask_{subset}"] + self.X_[f"bid_{subset}"]),
            np.nan,
        )

    def _is_at_ask_xor_bid(self, subset: str) -> pd.Series:
        """Check if the trade price is at the ask xor bid.

        Args:
            subset (str): subset i.e.,
            'ex' or 'best'.

        Returns:
            pd.Series: boolean series with result.
        """
        at_ask = np.isclose(self.X_["trade_price"], self.X_[f"ask_{subset}"], atol=1e-4)
        at_bid = np.isclose(self.X_["trade_price"], self.X_[f"bid_{subset}"], atol=1e-4)
        return at_ask ^ at_bid

    def _is_at_upper_xor_lower_quantile(
        self, subset: str, quantiles: float = 0.3
    ) -> pd.Series:
        """Check if the trade price is at the ask xor bid.

        Args:
            subset (str): subset i.e., 'ex'.
            quantiles (float, optional): percentage of quantiles. Defaults to 0.3.

        Returns:
            pd.Series: boolean series with result.
        """
        in_upper = (
            (1.0 - quantiles) * self.X_[f"ask_{subset}"]
            + quantiles * self.X_[f"bid_{subset}"]
            <= self.X_["trade_price"]
        ) & (self.X_["trade_price"] <= self.X_[f"ask_{subset}"])
        in_lower = (self.X_[f"bid_{subset}"] <= self.X_["trade_price"]) & (
            self.X_["trade_price"]
            <= quantiles * self.X_[f"ask_{subset}"]
            + (1.0 - quantiles) * self.X_[f"bid_{subset}"]
        )
        return in_upper ^ in_lower

    def _emo(self, subset: str) -> npt.NDArray:
        """Classify a trade as a buy (sell) if the trade takes place at the ask (bid) quote, and use the tick test to classify all other trades.

        Adapted from Ellis et al. (2000).

        Args:
            subset (Literal[&quot;ex&quot;, &quot;best&quot;]): subset i.e., 'ex' or 'best'.

        Returns:
            npt.NDArray: result of the emo algorithm with tick rule. Can be
            np.NaN.
        """
        return np.where(
            self._is_at_ask_xor_bid(subset), self._quote(subset), self._tick(subset)
        )

    def _rev_emo(self, subset: str) -> npt.NDArray:
        """Classify a trade as a buy (sell) if the trade takes place at the ask (bid) quote, and use the reverse tick test to classify all other trades.

        Adapted from Grauer et al. (2022).

        Args:
            subset (str): subset i.e., 'ex' or 'best'.

        Returns:
            npt.NDArray: result of the emo algorithm with reverse tick rule.
            Can be np.NaN.
        """
        return np.where(
            self._is_at_ask_xor_bid(subset), self._quote(subset), self._rev_tick(subset)
        )

    def _clnv(self, subset: str) -> npt.NDArray:
        """Classify a trade based on deciles of the bid and ask spread.

        Spread is divided into ten deciles and trades are classified as follows:
        - use quote rule for at ask until 30 % below ask (upper 3 deciles)
        - use quote rule for at bid until 30 % above bid (lower 3 deciles)
        - use tick rule for all other trades (±2 deciles from midpoint; outside
        bid or ask).

        Adapted from Chakrabarty et al. (2007).

        Args:
            subset (str): subset i.e.,'ex' or 'best'.

        Returns:
            npt.NDArray: result of the emo algorithm with tick rule. Can be
            np.NaN.
        """
        return np.where(
            self._is_at_upper_xor_lower_quantile(subset),
            self._quote(subset),
            self._tick(subset),
        )

    def _rev_clnv(self, subset: str) -> npt.NDArray:
        """Classify a trade based on deciles of the bid and ask spread.

        Spread is divided into ten deciles and trades are classified as follows:
        - use quote rule for at ask until 30 % below ask (upper 3 deciles)
        - use quote rule for at bid until 30 % above bid (lower 3 deciles)
        - use reverse tick rule for all other trades (±2 deciles from midpoint;
        outside bid or ask).

        Similar to extension of emo algorithm proposed Grauer et al. (2022).

        Args:
            subset (str): subset i.e., 'ex' or 'best'.

        Returns:
            npt.NDArray: result of the emo algorithm with tick rule. Can be
            np.NaN.
        """
        return np.where(
            self._is_at_upper_xor_lower_quantile(subset),
            self._quote(subset),
            self._rev_tick(subset),
        )

    def _trade_size(self, subset: str) -> npt.NDArray:
        """Classify a trade as a buy (sell) the trade size matches exactly either the bid (ask) quote size.

        Adapted from Grauer et al. (2022).

        Args:
            subset (str): subset i.e., 'ex' or 'best'.

        Returns:
            npt.NDArray: result of the trade size rule. Can be np.NaN.
        """
        bid_eq_ask = np.isclose(
            self.X_[f"ask_size_{subset}"], self.X_[f"bid_size_{subset}"], atol=1e-4
        )

        ts_eq_bid = (
            np.isclose(self.X_["trade_size"], self.X_[f"bid_size_{subset}"], atol=1e-4)
            & ~bid_eq_ask
        )
        ts_eq_ask = (
            np.isclose(self.X_["trade_size"], self.X_[f"ask_size_{subset}"], atol=1e-4)
            & ~bid_eq_ask
        )

        return np.where(ts_eq_bid, 1, np.where(ts_eq_ask, -1, np.nan))

    def _depth(self, subset: str) -> npt.NDArray:
        """Classify midspread trades as buy (sell), if the ask size (bid size) exceeds the bid size (ask size).

        Adapted from Grauer et al. (2022).

        Args:
            subset (str): subset i.e., 'ex' or 'best'.

        Returns:
            npt.NDArray: result of depth rule. Can be np.NaN.
        """
        at_mid = np.isclose(self._mid(subset), self.X_["trade_price"], atol=1e-4)

        return np.where(
            at_mid & (self.X_[f"ask_size_{subset}"] > self.X_[f"bid_size_{subset}"]),
            1,
            np.where(
                at_mid
                & (self.X_[f"ask_size_{subset}"] < self.X_[f"bid_size_{subset}"]),
                -1,
                np.nan,
            ),
        )

    def _nan(self, subset: str) -> npt.NDArray:
        """Classify nothing. Fast forward results from previous classifier.

        Returns:
            npt.NDArray: result of the trade size rule. Can be np.NaN.
        """
        return np.full(shape=(self.X_.shape[0],), fill_value=np.nan)

    def _validate_columns(self, missing_columns: list) -> None:
        """Validate if all required columns are present.

        Args:
            missing_columns (list): list of missing columns.

        Raises:
            ValueError: columns missing in dataframe.
        """
        columns = self.columns_ + missing_columns if self.columns_ else missing_columns
        self.X_ = pd.DataFrame(np.zeros(shape=(1, len(columns))), columns=columns)
        try:
            self._predict()
        except KeyError as e:
            result = re.search(r"'([^']+)'", str(e))
            if result:
                add_missing = result.group(1)
                if add_missing:
                    missing_columns.append(add_missing)
                    return self._validate_columns(missing_columns)
        if missing_columns:
            raise ValueError(
                f"Expected to find columns: {sorted(missing_columns)}. Check naming/presenence of columns. See: https://karelze.github.io/tclf/naming_conventions/"
            )
        del self.X_
        return None

    def fit(
        self,
        X: MatrixLike,
        y: ArrayLike | None = None,
        sample_weight: npt.NDArray | None = None,
    ) -> ClassicalClassifier:
        """Fit the classifier.

        Args:
            X (MatrixLike): features
            y (ArrayLike | None, optional):  ignored, present here for API consistency by convention.
            sample_weight (npt.NDArray | None, optional):  Sample weights. Defaults to None.

        Raises:
            ValueError: Unknown subset e. g., 'ise'
            ValueError: Unknown function string e. g., 'lee-ready'
            ValueError: Multi output is not supported.

        Returns:
            ClassicalClassifier: Instance of itself.
        """
        _check_sample_weight(sample_weight, X)

        funcs = (
            self._tick,
            self._rev_tick,
            self._quote,
            self._lr,
            self._rev_lr,
            self._emo,
            self._rev_emo,
            self._clnv,
            self._rev_clnv,
            self._trade_size,
            self._depth,
            self._nan,
        )

        self.func_mapping_ = dict(zip(ALLOWED_FUNC_STR, funcs))

        # create working copy to be altered and try to get columns from df
        self.columns_ = self.features
        if isinstance(X, pd.DataFrame):
            self.columns_ = X.columns.tolist()

        X = self._validate_data(
            X,
            y="no_validation",
            dtype=[np.float64, np.float32],
            accept_sparse=False,
            force_all_finite=False,
        )

        self.classes_ = np.array([-1, 1])

        # if no features are provided or inferred, use default
        if self.columns_ is None:
            self.columns_ = [str(i) for i in range(X.shape[1])]

        if len(self.columns_) > 0 and X.shape[1] != len(self.columns_):
            raise ValueError(
                f"Expected {len(self.columns_)} columns, got {X.shape[1]}."
            )

        self._layers = self.layers if self.layers is not None else []
        for func_str, _ in self._layers:
            if func_str not in ALLOWED_FUNC_STR:
                raise ValueError(
                    f"Unknown function string: {func_str},"
                    f"expected one of {ALLOWED_FUNC_STR}."
                )

        self._validate_columns([])
        return self

    def predict(self, X: MatrixLike) -> npt.NDArray:
        """Perform classification on test vectors `X`.

        Args:
            X (MatrixLike): feature matrix.

        Returns:
            npt.NDArray: Predicted traget values for X.
        """
        check_is_fitted(self)
        X = self._validate_data(
            X,
            dtype=[np.float64, np.float32],
            accept_sparse=False,
            force_all_finite=False,
        )

        rs = check_random_state(self.random_state)

        self.X_ = pd.DataFrame(data=X, columns=self.columns_)
        pred = self._predict()

        # fill NaNs randomly with -1 and 1 or with constant zero
        mask = np.isnan(pred)
        if self.strategy == "random":
            pred[mask] = rs.choice(self.classes_, pred.shape)[mask]
        else:
            pred[mask] = np.zeros(pred.shape)[mask]

        # reset self.X_ to avoid persisting it
        del self.X_
        return pred

    def _predict(self) -> npt.NDArray:
        """Predict with rule stack.

        Returns:
            npt.NDArray: prediction
        """
        pred = np.full(shape=(self.X_.shape[0],), fill_value=np.nan)
        for func_str, subset in self._layers:
            func = self.func_mapping_[func_str]
            pred = np.where(
                np.isnan(pred),
                func(subset=subset),
                pred,
            )
        return pred

    def predict_proba(self, X: MatrixLike) -> npt.NDArray:
        """Predict class probabilities for X.

        Probabilities are either 0 or 1 depending on the class.

        For strategy 'constant' probabilities are (0.5,0.5) for unclassified classes.

        Args:
            X (MatrixLike): feature matrix

        Returns:
            npt.NDArray: probabilities
        """
        # assign 0.5 to all classes. Required for strategy 'constant'.
        prob = np.full((len(X), 2), 0.5)

        # Class can be assumed to be -1 or 1 for strategy 'random'.
        # Class might be zero though for strategy constant. Mask non-zeros.
        preds = self.predict(X)
        mask = np.flatnonzero(preds)

        # get index of predicted class and one-hot encode it
        indices = np.nonzero(preds[mask, None] == self.classes_[None, :])[1]
        n_classes = np.max(self.classes_) + 1

        # overwrite defaults with one-hot encoded classes.
        # For strategy 'constant' probabilities are (0.5,0.5).
        prob[mask] = np.identity(n_classes)[indices]
        return prob

__init__(layers=None, *, features=None, random_state=42, strategy='random')

Initialize a ClassicalClassifier.

Examples:

>>> X = pd.DataFrame(
... [
...     [1.5, 1, 3],
...     [2.5, 1, 3],
...     [1.5, 3, 1],
...     [2.5, 3, 1],
...     [1, np.nan, 1],
...     [3, np.nan, np.nan],
... ],
... columns=["trade_price", "bid_ex", "ask_ex"],
... )
>>> clf = ClassicalClassifier(layers=[("quote", "ex")], strategy="const")
>>> clf.fit(X)
ClassicalClassifier(layers=[('quote', 'ex')], strategy='const')
>>> pred = clf.predict_proba(X)

Parameters:

Name Type Description Default
layers List[tuple[ALLOWED_FUNC_LITERALS, str]]

Layers of classical rule and subset name. Supported rules: "tick", "rev_tick", "quote", "lr", "rev_lr", "emo", "rev_emo", "trade_size", "depth", and "nan". Defaults to None, which results in classification by 'strategy' parameter.

None
features List[str] | None

List of feature names in order of columns. Required to match columns in feature matrix with label. Can be None, if pd.DataFrame is passed. Defaults to None.

None
random_state float | None

random seed. Defaults to 42.

42
strategy Literal[&quot;random&quot;, &quot;const&quot;]

Strategy to fill unclassfied. Randomly with uniform probability or with constant 0. Defaults to "random".

'random'
Source code in src/tclf/classical_classifier.py
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
def __init__(
    self,
    layers: list[
        tuple[
            ALLOWED_FUNC_LITERALS,
            str,
        ]
    ]
    | None = None,
    *,
    features: list[str] | None = None,
    random_state: float | None = 42,
    strategy: Literal["random", "const"] = "random",
):
    """Initialize a ClassicalClassifier.

    Examples:
        >>> X = pd.DataFrame(
        ... [
        ...     [1.5, 1, 3],
        ...     [2.5, 1, 3],
        ...     [1.5, 3, 1],
        ...     [2.5, 3, 1],
        ...     [1, np.nan, 1],
        ...     [3, np.nan, np.nan],
        ... ],
        ... columns=["trade_price", "bid_ex", "ask_ex"],
        ... )
        >>> clf = ClassicalClassifier(layers=[("quote", "ex")], strategy="const")
        >>> clf.fit(X)
        ClassicalClassifier(layers=[('quote', 'ex')], strategy='const')
        >>> pred = clf.predict_proba(X)

    Args:
        layers (List[tuple[ALLOWED_FUNC_LITERALS, str]]): Layers of classical rule and subset name. Supported rules: "tick", "rev_tick", "quote", "lr", "rev_lr", "emo", "rev_emo", "trade_size", "depth", and "nan". Defaults to None, which results in classification by 'strategy' parameter.
        features (List[str] | None, optional): List of feature names in order of columns. Required to match columns in feature matrix with label. Can be `None`, if `pd.DataFrame` is passed. Defaults to None.
        random_state (float | None, optional): random seed. Defaults to 42.
        strategy (Literal[&quot;random&quot;, &quot;const&quot;], optional): Strategy to fill unclassfied. Randomly with uniform probability or with constant 0. Defaults to &quot;random&quot;.
    """
    self.layers = layers
    self.random_state = random_state
    self.features = features
    self.strategy = strategy

fit(X, y=None, sample_weight=None)

Fit the classifier.

Parameters:

Name Type Description Default
X MatrixLike

features

required
y ArrayLike | None

ignored, present here for API consistency by convention.

None
sample_weight NDArray | None

Sample weights. Defaults to None.

None

Raises:

Type Description
ValueError

Unknown subset e. g., 'ise'

ValueError

Unknown function string e. g., 'lee-ready'

ValueError

Multi output is not supported.

Returns:

Name Type Description
ClassicalClassifier ClassicalClassifier

Instance of itself.

Source code in src/tclf/classical_classifier.py
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
def fit(
    self,
    X: MatrixLike,
    y: ArrayLike | None = None,
    sample_weight: npt.NDArray | None = None,
) -> ClassicalClassifier:
    """Fit the classifier.

    Args:
        X (MatrixLike): features
        y (ArrayLike | None, optional):  ignored, present here for API consistency by convention.
        sample_weight (npt.NDArray | None, optional):  Sample weights. Defaults to None.

    Raises:
        ValueError: Unknown subset e. g., 'ise'
        ValueError: Unknown function string e. g., 'lee-ready'
        ValueError: Multi output is not supported.

    Returns:
        ClassicalClassifier: Instance of itself.
    """
    _check_sample_weight(sample_weight, X)

    funcs = (
        self._tick,
        self._rev_tick,
        self._quote,
        self._lr,
        self._rev_lr,
        self._emo,
        self._rev_emo,
        self._clnv,
        self._rev_clnv,
        self._trade_size,
        self._depth,
        self._nan,
    )

    self.func_mapping_ = dict(zip(ALLOWED_FUNC_STR, funcs))

    # create working copy to be altered and try to get columns from df
    self.columns_ = self.features
    if isinstance(X, pd.DataFrame):
        self.columns_ = X.columns.tolist()

    X = self._validate_data(
        X,
        y="no_validation",
        dtype=[np.float64, np.float32],
        accept_sparse=False,
        force_all_finite=False,
    )

    self.classes_ = np.array([-1, 1])

    # if no features are provided or inferred, use default
    if self.columns_ is None:
        self.columns_ = [str(i) for i in range(X.shape[1])]

    if len(self.columns_) > 0 and X.shape[1] != len(self.columns_):
        raise ValueError(
            f"Expected {len(self.columns_)} columns, got {X.shape[1]}."
        )

    self._layers = self.layers if self.layers is not None else []
    for func_str, _ in self._layers:
        if func_str not in ALLOWED_FUNC_STR:
            raise ValueError(
                f"Unknown function string: {func_str},"
                f"expected one of {ALLOWED_FUNC_STR}."
            )

    self._validate_columns([])
    return self

predict(X)

Perform classification on test vectors X.

Parameters:

Name Type Description Default
X MatrixLike

feature matrix.

required

Returns:

Type Description
NDArray

npt.NDArray: Predicted traget values for X.

Source code in src/tclf/classical_classifier.py
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
def predict(self, X: MatrixLike) -> npt.NDArray:
    """Perform classification on test vectors `X`.

    Args:
        X (MatrixLike): feature matrix.

    Returns:
        npt.NDArray: Predicted traget values for X.
    """
    check_is_fitted(self)
    X = self._validate_data(
        X,
        dtype=[np.float64, np.float32],
        accept_sparse=False,
        force_all_finite=False,
    )

    rs = check_random_state(self.random_state)

    self.X_ = pd.DataFrame(data=X, columns=self.columns_)
    pred = self._predict()

    # fill NaNs randomly with -1 and 1 or with constant zero
    mask = np.isnan(pred)
    if self.strategy == "random":
        pred[mask] = rs.choice(self.classes_, pred.shape)[mask]
    else:
        pred[mask] = np.zeros(pred.shape)[mask]

    # reset self.X_ to avoid persisting it
    del self.X_
    return pred

predict_proba(X)

Predict class probabilities for X.

Probabilities are either 0 or 1 depending on the class.

For strategy 'constant' probabilities are (0.5,0.5) for unclassified classes.

Parameters:

Name Type Description Default
X MatrixLike

feature matrix

required

Returns:

Type Description
NDArray

npt.NDArray: probabilities

Source code in src/tclf/classical_classifier.py
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
def predict_proba(self, X: MatrixLike) -> npt.NDArray:
    """Predict class probabilities for X.

    Probabilities are either 0 or 1 depending on the class.

    For strategy 'constant' probabilities are (0.5,0.5) for unclassified classes.

    Args:
        X (MatrixLike): feature matrix

    Returns:
        npt.NDArray: probabilities
    """
    # assign 0.5 to all classes. Required for strategy 'constant'.
    prob = np.full((len(X), 2), 0.5)

    # Class can be assumed to be -1 or 1 for strategy 'random'.
    # Class might be zero though for strategy constant. Mask non-zeros.
    preds = self.predict(X)
    mask = np.flatnonzero(preds)

    # get index of predicted class and one-hot encode it
    indices = np.nonzero(preds[mask, None] == self.classes_[None, :])[1]
    n_classes = np.max(self.classes_) + 1

    # overwrite defaults with one-hot encoded classes.
    # For strategy 'constant' probabilities are (0.5,0.5).
    prob[mask] = np.identity(n_classes)[indices]
    return prob